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Abstract

For a system of an M-level atom interacting with cavity fields, the

statistical properties of the field are investigated numerically. The

variation of photon antibunching and probability distribution with the atomic

level number and initial field intensity are discussed for both resonance and

off-resonance cases. Accestcn For
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I. Int.t-:. _i- zz on

There are two aspects of the problem of an atom interacting with

radiation fields in a cavity, the dynamical behavior of the atom during the

interaction process and the evolution of the coherence and statistical

properties of the radiation field. Altho:gh a large amount of work on atomic

I
properties has been carried out he Jaynes-Cummings (JC) model, relatively

less attention has been paid to the field properties.

Early studies of the firsL-order correlation function in the jC model

revealed that the disparity between <at(t)a(t)> and <a (t)><a(t)> increases

with time if the field is initially in the coherent state. 2 Diagonal elements

3
of the field density matrix were explicitly calculated later. Only recently

were effects on the nonclassical behavior of the atom and the field due to the

4
cavity loss discussed. The upper and lower bounds of the Q-value in the JC

5
model were given analytically, and an analysis of these bounds show that the

larger the amplitude of the initial coherent state, the less sub-Poisson (or

super-Poisson) the photon statistics can become.

A direct generalization of the JC model is the system of a three-level

atom interacting with one-mode or two-mode cavity fields. The off-resonance

behavior of the cavity fields has been investigated by two of the present

6,7
authors and others. It was discovereo ' Ref. 6 that the initially

coherent field does not lose its coherence right after the interaction with

the atom takes place when the interaction is off resonance. Instead, it may

recover coherence almost periodically. As a matter of fact, the field can

remain coherent for a long time if the detunings are sufficiently far away

from the resonance. The photon probability distribution and fluctuation are

discussed in detail in Ref. 7, where it is found that for a one-mode A-type

atom, sub-Poisson and super-Poisson distributions appear alternatively as time



develops, and for a two-mode A-type the distribution is always super-Poisson.

Furthermore, photons involved in the former case exhibit antibunching

phenomena and in the latter case exhibit bunching phenomena.

The photon statistics has also been studied in another case in which an

atom with one common upper and N-I lower levels interacts with N-I modes of a

8
cavity field. A numerical calculation was performed for resonance

interaction with initially one mode (called the pumping mode) of coherent

light present. Once the interaction takes place, all the other modes (called

signal modes) start to build up. Photons in these signal modes are found to

show sub-Poisson distribution and hence exhibit antibunching all the time.

As the observation of the one-atom maser has become practical,9 and

since the atom is excited to high levels with principal quantum number in the

range of 30 - 40, it is inevitable that multiphoton processes are involved.

In fact, a micromaser based on degenerate two-photon transitions is already

10
realized. Theoretically, however, there does not seem to have been

sufficient attention given to multiphoton processes in the literature thus

11, 12
far. In two recent papers, the present authors considered a single M-

level atom interacting with cavity fields with arbitrary detunings. Time

evolution of atomic level occupation probabilities, mean photon number and

field squeezing have been investigated in detail. Their dependence on the

atomic level number as well as on the initial field intensity has been

discussed. Here in this paper, we discuss the photon probability distribution

and fluctuation and their variations with various parameters.

An outline of the theory is given in Sec. II. Results of the numerical

calculation are presented and discussed in Sec. III, and concluding remarks

are given in Sec. IV.



II. Theory

The general formalism of the theory can be found in Ref. ii (hereafter

referred to as I), and we only outline the essentials here. We consider a

cascade atom with M energy levels as shown in Fig. 1. The total Hamiltonian

is, in the rotating wave approximation,

M M-1
H - Xf~ata + X,,A tA " +  A iA!+iAia + h.c. (i)

i-i i-i

i

and A. are the atom-field coupling constants. Our discussion will be limited,i

for simplicity, to processes involving only a one-photon transition between

adjacent atomic levels.

We define the total excitation number operator

Mt.
N - aa+ iAIA i  (2)

i-i1

which is the sum of the photon number and atomic excitation number operators.

A A

It can readily be verified that [H,N] - 0, i.e., N is a constant of motion.

If we are only interested in the particular case in which the atom is

initially in its highest level, then we need only consider that part of the

Hilbert space involving state vectors corresponding to N > M, where N is the
A

eigenvalue of the operator N. This is a consequence of the fact that N is a

conserved quantity.

Consider the state

• -..,..,, .m ~ lu mmu illillilIil ili
ro ll

I I I



5

in which there are n photons in the field and the atom is in the i-th state.

The subspace corresponding to N - M + n is spanned by the state vectors IMn>,

IM-l,n+l>, ... li,n+M-i>, ... Il,n+M-l>, where n is the photon number in the

field and can take any positive integral value. Since state vectors in

different subspaces are necessarily orthogonal, the total Hamiltonian can be

diagonalized in every subspace.

An arbitrary state in the subspace corresponding to N can be expressed

as

M

10n> - i,n+M. ii,n+M-i> , (4)

i-I

where the expansion coefficients C i,n+M i satisfy the stationary-state

Schr6dinger equation

M

(H + - E6 ii,)Cin+Mi - 0 (5)
ii'-i-

ir-1

The matrix elements in (5) are given by

i-i

Hii - <i,n+M-ilHli,n+M-i> - (n+M-l)) 1 + NwI A (5a)

j-i

Hii, -<n+M-iIHli',n+M-i'>
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A f-+m-i' 6.,i,+l + A ,/ +M-i'+l 6 . i' (5b)

Here we have defined the detuning parameters

A. = W, - -(Wi+l - i) , i - 1, 2, ..., M- (6)

The energy eigenvector ona > and the corresponding eigenvalue E are

determined by

Hjna>= na na> (7a)

M
1, > - C a 'i, n+M-i> (7b)

na L. i,n+M-1'

i-i

The subscript a in (7a) labels the eigenstates in the subspace in question.

If the atom is assumed to be initially in the M-th level, then for all

time t > 0 the system can only be found in subspaces with N > M. There are M

eigenstates of the type (7b) in every subspace. Hence the orthono-mality

condition is

M

Cin+M-i (,8n+M-i aa)

i-l

and the completeness relation is

t M

- 1 .Ona (9)

n-O a-l



We can now solve the equation of motion for the density matrix. Its

matrix element between energy eigenstates satisfies the equation

a- (t )  = - 1 (En En I )P ( 0)

at Pna,n'a na nor na,nac

whose solution can be put in the form

i (E E 
(i/)

Pna,n'a ' (t) - Pna,n'a ' (0) e-n (11)

The initial matrix element in (11) is given by

-i M -I)Mp ,a(Q) -p P (C- ) M (C 1),M(2
Pna,na nn'  a,n+M-o a',n+M-a' (12)

-1
where C is the inverse matrix of the transformation defined in (4) and p nn'

is the initial density matrix element of the field.

The normalized intensity correlation function of the field is defined as

g 2 <(t) - aa2>/<aTa> (13)

where

<n> - <ata> - Tr(pata)

Go M M M

-(n+M-i) 
C a C at..
Sin+M-i i,n+M-i

n-0 i-i a-I a'-i



r(Ena-E )t

x pn ,(0) cos ( n E n (14)

<a 2 a2 > - (n+M-i)(n+M-i-1)

n-O i-i

M M

'S C~ '(O) Cosj~fun (15)
i,n+M-i i,n+M-i na,n '

u--i u'-1

The probability of finding m photons in the field at time t is given by

m

pm(t) - ) <i,n+M-ilpli,n+M-i> , (16)

n-m-M+l

where i - n+M-m and n > 0. Taking the inverse transformation of (7b) and

plugging it into (16), we find

m M M

(t) (C- 1 n+M-m (- n+M-mPmt- ( 'j,n+M-j, ( j )n+M-j

n-m-M+l j-1 j'-I

x Pn fnj'(O) cos( ni- E . (17)

where we have made use of (11). It is then not difficult to prove that

pM (t) ) Pnj,nj (O) - (18)

M-O n-O j-1



The statistical properties of the field are completely described by Eqs. (13)

and (17), which we shall discuss in the following section.

.ll. Results and discussion

Throughout this paper, we take - i in our numerical calculation. The

above formulas are derived on the assumption the atom is initially in its

highest level M. We now assume further that the field is initially in the

coherent state with mean photon number n. Thus the diagonal matrix element of

the initial density matrix of the field is

-n -
n -n (19)

nn n!

As is well known, when the field is strictly in the coherent state, the

equal-time second-order correlation function is g (2)(t) - i. When g (2)(t) <

1, the field exhibits antibunching, and when g (2)(t) > 1, the field exhibits

bunching. The time evolution of the correlation function calculated from (13)

is presented in Figs. 2 and 3 for various M and n. Resonance conditions

- 0 have been assumed here for simplicity. It is observed that the
2.

correlation function oscillates irregularly around its initial value of 1.

Thus the field exhibits alternatively bunching and antibunching as time

develops. For a fixed M, this oscillation amplitude decreases with the

increasing n. In other words, the stronger the initial field is, the weaker

the effect of bunching or antibunching becomes. Therefore, strong photon

bunching or antibunching results if the initial field strength weakens. The

5same conclusions have been obtained for the M - 2 case.
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Physically, it is not difficult to understand this phenomenon. Since we

have assumed that the field is in the coherent state initially, at any Later

time or t > 0, the total field is the sum of the initial field plus the

radiation field of the stimulated atom. The latter acts like a modulator that

causes the initial field to deviate from coherence. The smaller the n, the

easier the initial field is modulated. At any time t > 0, the total field is

dominated by the stimulated radiation field which is an oscillating function

of time. As a consequence, the total field oscillates between bunching and

antibunching. If we compare the curves for the same n but different M, we

find that the effect of antibunching decreases when the number of atomic

levels increases. Similar results have also been found for a common upper N-

level atom interacting with N-1 modes of cavity fields.
8

The photon number fluctuation is directly related to the Q-parameter

13
defined 

as

2 2
<n 2> - <n>Q - <n> (20)

When Q > 0, the fluctuation is large and the photon prcbability distribution

is super-Poisson. When Q < 0, the fluctuation is small and the probability

distribution is sub-Poisson. The lower bound of Q is -1, corresponding to

zero fluctuation, where the p;:obability has its sharpest peak. When Q - 0,

the photon probability has a Poisson distribution, indicating a coherent state

of the field. The time evolution of the Q-parameter is presented in Figs. 6

and 7 for different M and n. From these figures we can see that, similar to

g(2 ), for fixed M the amplitude of the oscillation of Q becomes smaller when n

increases, and that the photon probability approaches the Poisson distribution
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when n increases. For fixed n, increasing M will cause the photon probability

to deviate from the Poisson distribution and tend to become super-Poisson.

Since the Q-parameter is related to the normalized Glauber correlation

function g (2)(0) bv

Q - <n>[g(2)(0) (21)

it is clear that photons exhibit the antibunching phenomenon whenever the

probability distribution is sub-Poisson, and exhibits bunching phenomenon when

the probability has a super-Poisson distribution. It should be noted that a

minimum g( 2 ) does not imply a minimum Q because of the factor <n> in (21),

except that <n> is just in the time region with collapsed oscillation. This

can be seen by comparing Figs. 2, 4, and 6 or Figs. 3, 5 and 7 with one

another. We have also found that for certain n and M the field can be kept in

a coherent state for a long time with g (2) = 1 and Q ; 0 (see Figs. 2(c) and

6(c)). This means that the initially coherent field can recover its coherence

after the interaction with the atom takes place. This is in agreement with

the conclusions of Ref. 6.

Next we look at the case in which thg detunings are nonzero. We assume

that IAJ , 0 (i - 1, 2, ... , M-1) but A i - 0. That is, multiphoton

.i-l
transitions involving less than M-1 photons are all detuned, and only the

(M-l)-fold dm-..erate photon transition satisfies the resonance condition.

The correl!,.-n function is calculated for M - 3 and 9, n - 3 and Jaii - 0.5

and 1.5. The u-Aalts are plotted in Figs. 8 and 9. We see from these figures

that for a given M, a larger detuning results in weaker antibunching but

stronger bunching. This feature becomes even stronger as M becomes larger.

On the other hand, when the detunings JiA are fixed, then larger M
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corresponds to weaker antibunching. This means that the more photons that are

involved in the degenerate multiphoton transition, the weaker the antibunching

becomes in the process.

In addition, we have also examined the sub-Poisson distributions of the

photons with the same M but different n, where we find sharper peaks in the

stribution when the initital field strength is weaker or when n is smaller.

-ted, however, that n should be kept above a certain value, say, > 3,

-therwise the distribution approaches the shape of a thermal

distri. 1. We have also computed the photon distribution for nonresonant

cases (numerical results are not presenr:d here), where we have found that the

detunings tend to weaken the sub-Poisson and super-Poisson effects.

IV. Conclusions

We have shown that multiphoton processes lead to a minimum fluctuation

in the field intensity. Although such a markedly reduced fluctuation occurs

only at some particular time, it can be achieved by adjusting the velocity of

the atom injected into the optical cavity, because the JC model is realized in

9
practice by the micromaser. In other words, the most stable intensity of the

output field can be obtained by adjusting the duration that the atom stays

within the cavity. This is also true for the squeezing of the field. 12
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Figure captions

i. Schematic diagram of the atomic levels.

2. Time evolution of the correlation function g(2) under resonance conditions

A. = 0 for M - 3: (a) n- 3, (b) n - 5, (c) n - 10.

3. Same as Fig. 2 except M = 9.

4. Time evolution of the mean photon number <n> for A. = 0 and M - 3: (a) n

- 3, (b) n - 5, (c) n - 10.

5. Same as Fig. 4, except M - 9.

6. Time evolution of Mandel's Q-parameter for A. - 0 and M - 3: (a) n - 3,

(b) n - 5, (c) n- 10.

7. Same as Fig. 6, except M - 9.

(2)8. Time evolution of g for M - 3 and n - 3. The resonance conditions are

not satisfied by the individual transitions, but iAi - 0, where

M l > 0, &M__I. . .AM-, <  0 (i -I. .. -l : (a) l~ l -0.5, (b)

2 2
tAJi - 1.5.

9. Same as Fig. 8 except M = 9.
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